An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem

نویسندگان

  • Alexandre Caboussat
  • Roland Glowinski
  • Victoria Pons
چکیده

Abstract — In this article, we address the numerical solution of a non-smooth eigenvalue problem, which has implications in plasticity theory and image processing. The smallest eigenvalue of the nonsmooth operator under consideration is shown to be the same for all bounded, sufficiently smooth, domains in two space dimensions. Piecewise linear finite elements are used for the discretization of eigenfunctions and eigenvalues. An augmented Lagrangian method is proposed for the computation of the minima of the associated non-convex optimization problem. The convergence of finite element approximations of generalized eigenpairs is investigated. Numerical solutions are presented for the first eigenvalue and eigenfunction. For non simply connected domains, the augmented Lagrangian method also captures larger eigenvalues as local minima. Bifurcation between the first and second eigenvalues is investigated numerically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Looking for the Best Constant in a Sobolev Inequality: A Numerical Approach

A numerical method for the computation of the best constant in a Sobolev inequality involving the spacesH2(Ω) and C0(Ω) is presented. Green’s functions corresponding to the solution of Poisson problems are used to express the solution. This (kind of) non-smooth eigenvalue problem is then formulated as a constrained optimization problem and solved with two different strategies: an augmented Lagr...

متن کامل

Numerical Solution of a Variational Problem Arising in Stress Analysis : the Vector Case

In this article, we discuss the numerical solution of a constrained minimization problem arising from the stress analysis of elasto-plastic bodies. This minimization problem has the flavor of a generalized non-smooth eigenvalue problem, with the smallest eigenvalue corresponding to the load capacity ratio of the elastic body under consideration. An augmented Lagrangian method, together with fin...

متن کامل

Solving Environmental/Economic Power Dispatch Problem by a Trust Region Based Augmented Lagrangian Method

This paper proposes a Trust-Region Based Augmented Method (TRALM) to solve a combined Environmental and Economic Power Dispatch (EEPD) problem. The EEPD problem is a multi-objective problem with competing and non-commensurable objectives. The TRALM produces a set of non-dominated Pareto optimal solutions for the problem. Fuzzy set theory is employed to extract a compromise non-dominated sol...

متن کامل

Finite Element Solutions of Cantilever and Fixed Actuator Beams Using Augmented Lagrangian Methods

In this paper we develop a numerical procedure using finite element and augmented Lagrangian meth-ods that simulates electro-mechanical pull-in states of both cantilever and fixed beams in microelectromechanical systems (MEMS) switches. We devise the augmented Lagrangian methods for the well-known Euler-Bernoulli beam equation which also takes into consideration of the fringing effect of electr...

متن کامل

A NEW APPROACH TO THE SOLUTION OF SENSITIVITY MINIMIZATION IN LINEAR STATE FEEDBACK CONTROL

In this paper, it is shown that by exploiting the explicit parametric state feedback solution, it is feasible to obtain the ultimate solution to minimum sensitivity problem. A numerical algorithm for construction of a robust state feedback in eigenvalue assignment problem for a controllable linear system is presented. By using a generalized parametric vector companion form, the problem of eigen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Num. Math.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2009